Lecture 9 Summary

Phys 404

The multiplicity of a system will depend on the number of particles N and energy U, as we saw
with the spin-1/2 system. For more general systems, the multiplicity will also depend on the volume.
For example in the ideal gas we will find that multiplicity g ~ V/Vq, where Vg is a quantum volume. Thus
in general, the entropy (o = log(g)) will also depend on particle number N, energy U, and volume V: ¢ =

o(N, U, V). Consider a system with a fixed number of particles N (canonical ensemble), then a general
do

po |y dV. A coordinated change in U and V that

change in entropy is given by da(U,V) = Z—Z |y dU +

maintains a fixed entropy is said to be an isentropic process, and yields 0 = Z—Z ly (6U), + Z—; |y (V) g,
where the special changes in U and V that keep o constant are noted with subscript o. Dividing by
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(6V), and recognizing the temperature as o= ﬁ |y, and p = ~3 |s, this yields a new expression for

the pressure: p = ‘L'a—al

Returning to the full differential of entropy (at fixed N), it can now be written as do(U,V) =
%dU + %dV, or after multiplying through by 7, tdo = dU + pdV (fixed N), which is called the

Thermodynamic Identity. It resembles the first law of thermodynamics (with €Q =t do, and
dW = —p dV), but is actually a distinct statement. It will be generalized later to include variable
particle number and different types of work beyond the mechanical variety (pdV).

Re-writing the Thermodynamic Identity, dU = tdo — pdV, one can look at this as an expression
for how energy changes with variations in entropy and volume, i.e. U = U(o,V). However, one may
have different parameters at one’s control, such as temperature and volume. A Legendre
transformation can be used to change the independent variables from (a,V) to (z,V). In this case
consider the differential d(to) = tdo + odt. Substituting for tdo yields dU = d(t0) — odt — pdV, or
bringing the full differentials together on the LHS yields d(U — t0) = —adt — pdV. We call the
quantity F = U — 7o the Helmholtz free energy.

The Helmholtz free energy is a minimum for a system at fixed volume and temperature in
equilibrium with the reservoir. We showed that the full differential dF = 0, showing that it is an
extremum. We also considered the entropy of the entire reservoir+system and showed that
maximization of that entropy corresponds to minimization of the free energy of the system.

The differential form of the Helmholtz free energy suggests that two other thermodynamic
guantities can be calculated from F by taking partial derivatives: —o = g—i |y, and —p = g—; |;. Equating

the cross derivatives of F with respect to volume and temperature yields the first of four Maxwell
do

ions: 2P| = 92
relations: aer_ P |-



We can now relate the Helmholtz free energy F = U — 170 to the partition function (and
therefore the original quantum mechanical solution). We just found that the entropy can be found from

oF . . . . JdF .
Faso = ~5 |y, which means we have a differential equation for F: F =U + TS |y This can be re-
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_— which bears resemblance to a result from the last lecture: U = 72 L().

written as U =
ot

Comparing, we find that —g = log (Z) + ¢, and it is shown in K+K that the constant c is equal to zero to

reproduce the correct entropy at zero temperature.

Because the partition function is a sum of non-negative terms (even for negative temperature)
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of the form e
probability of occupation of any state will be bounded above by 1.

, it can never have a value smaller than the largest Boltzmann factor, hence the

We finished by considering again the example of a two-level system with states at energy 0 and
energy €. The partition function for such a system in thermal contact with a reservoir at temperature t
isZ =1+ e ¢/T. The free energy is just F = —tlog(Z) = —tlog (1 + e~¢/%). The entropy is calculated

(e/T)e~E/" . . .
+ ————=—, where we interpret the fixed volume constraint to mean

1+e 7t
that the energy levels are fixed. The energy U can be calculated directly from the free energy and

entropyasU = F + 10 = f . These functions are plotted versusg in the accompanying file posted on

et+1
the class website. From these plots we see that the Helmholtz free energy is always negative, or zero. It

as o = —Z—I;|V zlog(1+e_§)

shows a slope of —log(2) in the limit of large E, which is the limiting value of the entopy at high

temperature. The probability of occupation of each state approacheds % in the high temperature limit,
giving the system a multiplicity of 2, hence entropy log(2). At low temperature (¢/t — ) there is
effectively only one state that can be occupied (the ground state) and the entropy is log(1) = 0. It may
seem odd that a discrete two-level system generates the continuous functions of free energy, entropy
and energy versus z We are implicitly assuming that an ensemble of identical two-level systems has
been created and we are forming an average of macroscopic observable properties over this ensemble.
Although the outcome of an observation of any particular system is discrete, the ensemble average is a
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continuous function of; .


http://www.physics.umd.edu/courses/Phys404/Anlage_Spring11/Thermodynamics%20of%20the%20two-level%20system.pdf

